测绘通报 ›› 2025, Vol. 0 ›› Issue (8): 19-25.doi: 10.13474/j.cnki.11-2246.2025.0804

• 学术研究 • 上一篇    下一篇

融合无人机位姿信息的地面目标定位方法

罗卿莉1, 张书缤1, 蒋鑫涛1, 魏钜杰2, 甘俊3   

  1. 1. 天津大学精密测试技术及仪器全国重点实验室, 天津 300072;
    2. 中国测绘科学研究院, 北京 100036;
    3. 中国铁路设计集团, 天津 300251
  • 收稿日期:2025-01-07 出版日期:2025-08-25 发布日期:2025-09-02
  • 作者简介:罗卿莉(1985—),女,博士,副教授,主要研究方向为SAR遥感与INSAR应用。E-mail:luoqingli@tju.edu.cn
  • 基金资助:
    天津市轨道交通导航定位及时空大数据技术重点实验室开放课题基金(TKL2023B10)

Ground target localization method combining unmanned aerial vehicle pose information

LUO Qingli1, ZHANG Shubin1, JIANG Xintao1, WEI Jujie2, GAN Jun3   

  1. 1. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China;
    2. Chinese Academy of Surveying & Mapping, Beijing 100036, China;
    3. China Railway Design Corporation, Tianjin 300251, China
  • Received:2025-01-07 Online:2025-08-25 Published:2025-09-02

摘要: 利用单幅无人机图像进行地面目标定位的传统方法至少需要4个先验控制点信息。针对控制点获取难度随着数量的增加呈现算术级增长的问题,本文提出了一种融合无人机位姿信息的地面目标定位方法。该方法结合无人机位姿信息与3个地面控制点建立几何光学模型,获取地面目标点与无人机图像像素点的映射关系,进而确定各个地面目标点的经纬度坐标,实现了基于单幅无人机图像的地面目标精确定位,减少了必需的控制点数量,并提高了定位精度。试验结果表明,该方法的平均定位精度达1.45个像素,比传统PnP四点目标定位方法提高了4.61个像素。

关键词: 地面目标定位, 无人机, 位姿信息, 控制点, 几何光学模型

Abstract: Traditional methods for ground target localization using single-frame drone images typically require at least four prior control point information.However,acquiring control points becomes increasingly challenging as their quantity increases,presenting an arithmetic growth problem.This paper proposes a ground target localization method that integrates unmanned aerial vehicle(UAV)pose information.The method combines UAV pose information with three ground control points to establish a geometric optical model.This model enables the mapping relationship between ground target points and UAV image pixels,facilitating the determination of latitude and longitude coordinates for each ground target point.Consequently,precise ground target localization based on a single-frame drone image is achieved,reducing the required number of control points and enhancing localization accuracy.The experimental results indicate that the average positioning accuracy of this method reaches 1.45 pixels,which is 4.61 pixels higher than that of the traditional PnP four-point target positioning method.

Key words: ground target positioning, UAV, position and attitude information, control points, geometric optical model

中图分类号: