测绘通报 ›› 2025, Vol. 0 ›› Issue (12): 7-14.doi: 10.13474/j.cnki.11-2246.2025.1202

• 学术研究 • 上一篇    

面向无人机与遥感影像的烟雾火焰目标提取方法

刘晓栋1,2, 赵晨萌3,4,5,6, 任迎华7, 杨礼平1,2, 赵立科1,2, 张卡3,4,5,6   

  1. 1. 江苏省地质调查研究院, 江苏 南京 210018;
    2. 自然资源江苏省卫星应用技术中心, 江苏 南京 210018;
    3. 气候系统预测与变化应对全国重点实验室(南京师范大学), 江苏 南京 210023;
    4. 南京师范大学地理科学学院, 江苏 南京 210023;
    5. 虚拟地理环境教育部重点实验室(南京师范大学), 江苏 南京 210023;
    6. 江苏省地理信息资源开发与利用协同创新中心, 江苏 南京 210023;
    7. 江苏苏州地质工程勘察院, 江苏 苏州 215129
  • 收稿日期:2025-04-30 发布日期:2025-12-31
  • 通讯作者: 张卡。E-mail:zhangka81@126.com
  • 作者简介:刘晓栋(1978—),男,高级工程师,从事自然资源调查监测方面的应用研究。E-mail:21020261@qq.com
  • 基金资助:
    国家自然科学基金(42271342);江苏高校优势学科建设工程(164320H116)

The method of smoke and flame target extraction facing UAV and remote sensing images

LIU Xiaodong1,2, ZHAO Chenmeng3,4,5,6, REN Yinghua7, YANG Liping1,2, ZHAO Like1,2, ZHANG Ka3,4,5,6   

  1. 1. Geological Survey of Jiangsu Province, Nanjing 210018, China;
    2. Natural Resources Satellite Application Technology Center of Jiangsu Province, Nanjing 210018, China;
    3. State Key Laboratory of Climate System Prediction and Risk Management (Nanjing Normal University), Nanjing 210023, China;
    4. School of Geography, Nanjing Normal University, Nanjing 210023, China;
    5. Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China;
    6. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China;
    7. Jiangsu Suzhou Geological Engineering Investigation Institute, Suzhou 215129, China
  • Received:2025-04-30 Published:2025-12-31

摘要: 针对无人机与遥感影像烟雾火焰检测任务中存在的多尺度特征捕捉不足、复杂背景干扰及边缘模糊等瓶颈问题,本文提出了一种基于改进型YOLOv12的烟雾火焰目标提取方法。该方法通过混合局部通道注意力机制强化多尺度特征融合,利用自适应下采样模块改善低分辨率影像的细节保留能力,并设计自适应损失函数提升边界回归精度;结合微调SAM 2.1模型,可实现检测框内目标的像素级分割。在FASDD_UAV、FASDD_RS及S-Firedata数据集上的试验表明,本文方法的mAP50指标分别达到93.1%、78.5%和68.2%,较基准模型YOLOv12分别提升了1.3、1.5和1.2个百分点,在小目标检测、遮挡场景及复杂光照条件下表现出显著优势;另外,消融试验证实MLCA与ADown模块的特征增强效果,以及Focaler-PIoU通过动态梯度分配对模型性能的优化作用。

关键词: 遥感影像, 烟雾火焰检测, YOLO, SAM, 注意力机制

Abstract: Addressing the bottlenecks in UAV and remote sensing-based smoke/flame detection task,such as insufficient multi-scale feature capture,complex background interference,and blurred edges,a method of smoke and flame target extraction based on the improved YOLOv12 model is proposed in this paper.The proposed method enhances multi-scale feature fusion through a mixed local-channel attention (MLCA)mechanism,improves detail retention in low-resolution images via an adaptive downsampling (ADown)module,and refines boundary regression accuracy with a customized adaptive loss function.Furthermore,by integrating the fine-tuned SAM2.1 model,the paper's method can realize pixel-level segmentation of targets within detection boxes.Experiments on the FASDD_UAV,FASDD_RS,and S-Firedata datasets shows that the proposed method achieves mAP50 scores of 93.1%,78.5%,and 68.2%,outperforming the baseline model YOLOv12 by 1.3%,1.5%,and 1.2%,respectively.The proposed method demonstrates significant advantages in detecting small targets,handling occluded scenarios and complex lighting conditions.Additionally,ablation experiments have confirmed the feature enhancement effects of the MLCA and Adown modules,as well as the optimization effect of Focaler-PIoU on model performance through dynamic gradient allocation.

Key words: remote sensing images, smoke flame detection, YOLO, SAM, attention mechanism

中图分类号: