测绘通报 ›› 2025, Vol. 0 ›› Issue (12): 178-183.doi: 10.13474/j.cnki.11-2246.2025.1231

• 测绘地理信息技术应用案例 • 上一篇    

融合多模态数据的河道遥感地物识别

王超1, 付强1, 崔志芳1, 唐甜2   

  1. 1. 长江水利委员会水文局长江中游水文水资源勘测局, 湖北 武汉 430010;
    2. 武汉天宝耐特科技有限公司, 湖北 武汉 430070
  • 收稿日期:2025-07-22 发布日期:2025-12-31
  • 通讯作者: 崔志芳。E-mail:cui@whu.edu.cn
  • 作者简介:王超(1989—),男,高级工程师,主要从事河道测绘与无人机遥感。E-mail:45586077@qq.com
  • 基金资助:
    国家重点研发计划(2023YFC3209502);长江水利委员会水文局科技创新基金(SWJ-25CJX24)

Remote sensing feature identification of river channel by fusing multimodal data

WANG Chao1, FU Qiang1, CUI Zhifang1, TANG Tian2   

  1. 1. Middle Changjiang River Bureau of Hydrology and Water Resources Survey, Bureau of Hydrology of Changjiang Water Resource Commission, Wuhan 430010, China;
    2. Wuhan Trimble Net Technology Co., Ltd., Wuhan 430070, China
  • Received:2025-07-22 Published:2025-12-31

摘要: 针对无人机遥感中河道地物因光谱混淆与阴影遮挡导致的地物分类精度不足的问题,本文提出了一种基于DeepLabV3+的RGB-DSM多模态数据融合语义分割方法。该方法通过整合无人机RGB影像的光谱信息与激光点云生成的DSM高程信息,引入“光谱-结构”特征协同机制,实现对水体、堤坡、树木等河道典型地物的像素级精准识别。试验结果表明,与RGB相比,RGB-DSM多模态数据输入下,模型像素精度(PA)由93.47%提升至95.06%,平均交并比(mIoU)由81.60%提高至84.38%,其中树木类别IoU提升显著。视觉对比显示,DSM高程信息的加入有效改善了道路边界模糊、树木阴影误分类等问题,显著增强了复杂地物的空间结构表达能力。本文证明了RGB-DSM多模态融合在提升河道地物语义分割精度方面具有独特优势。

关键词: 无人机遥感, 河道地物识别, 语义分割, DeepLabV3+, RGB-DSM

Abstract: Aiming at the lack of feature classification accuracy of river features in UAV remote sensing due to spectral confusion and shadow masking,this study proposes a semantic segmentation method based on DeepLabV3+ for RGB-DSM multimodal data fusion.The method integrates the spectral information of RGB images from UAVs and the DSM elevation information generated from laser point clouds,and introduces the “spectral-structural” feature synergy mechanism to realize the pixel-level accurate recognition of typical river features,such as water bodies,embankment slopes,trees,and so on.The experimental results show that,compared with RGB,the pixel accuracy (PA)of the model is increased from 93.47% to 95.06%,and the mean intersection ratio (mIoU)is increased from 81.60% to 84.38%,with a significant increase in the IoU of the tree category under the RGB-DSM multimodal data input.The visual comparison shows that the inclusion of DSM elevation information effectively improves the problems of road boundary blurring and tree shadow misclassification,and significantly enhances the spatial structure representation of complex features.This paper demonstrates that RGB-DSM multimodal fusion has unique advantages in improving the semantic segmentation accuracy of river features.

Key words: UAV remote sensing, river feature recognition, semantic segmentation, DeepLabV3+, RGB-DSM

中图分类号: