[1] WOODGET A S, AUSTRUMS R, MADDOCK I P, et al.Drones and digital photogrammetry: from classifications to continuums for monitoring river habitat and hydromorphology[J].WIREs Water, 2017, 4(4): e1222. [2] 黄育华, 吴念辉, 陈杰, 等.基于无人机全景影像的河道岸线地物变化检测方法[J].人民长江, 2025, 56(3): 230-236. [3] CHAO Zhenhua, FANG Xuan, NA Jiaming, et al.A collaborative sensing system for farmland water conservancy project maintenance through integrating satellite, aerial, and ground observations[J].Water, 2021, 13(16): 2163. [4] KUCHARCZYK M, HUGENHOLTZ C H.Remote sensing of natural hazard-related disasters with small drones: global trends, biases, and research opportunities[J].Remote Sensing of Environment, 2021, 264:112577. [5] MOHD DAUD S M S, MOHD YUSOF M Y P, HEO C C, et al.Applications of drone in disaster management: a scoping review[J].Science & Justice, 2022, 62(1):30-42. [6] 许强, 郭晨, 董秀军.地质灾害航空遥感技术应用现状及展望[J].测绘学报, 2022, 51(10): 2020-2033. [7] 肖斌, 罗浩, 张恒宾, 等.多尺度融合卷积的轻量化Transformer无人机地物识别模型[J].郑州大学学报(理学版), 2024, 56(1): 32-39. [8] LI Ziran, NAMIKI A, SUZUKI S, et al.Application of low-altitude UAV remote sensing image object detection based on improved YOLOv5[J].Applied Sciences, 2022, 12(16): 8314. [9] CAO Zhen, KOOISTRA L, WANG Wensheng, et al.Real-time object detection based on UAV remote sensing: a systematic literature review[J].Drones, 2023, 7(10): 620. [10] 雷相达, 王宏涛, 赵宗泽.整合迁移学习与全卷积网络的小样本机载激光雷达点云分类[J].中国激光, 2021, 48(16):138-149. [11] 黄远程, 陈领, 江宇, 等.融合注意力和多尺度表达的机载激光点云分类[J].测绘科学, 2022, 47(11): 137-144. [12] SHEYKHMOUSA M, MAHDIANPARI M, GHANBARI H, et al.Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 6308-6325. [13] AKAR Ö, GVNGÖR O.Classification of multispectral images using random forest algorithm[J].Journal of Geodesy and Geoinformation, 2012, 1(2): 105-112. [14] CHARBUTY B, ABDULAZEEZ A.Classification based on decision tree algorithm for machine learning[J].Journal of Applied Science and Technology Trends, 2021, 2(1): 20-28. [15] BANDYOPADHYAY S, MAULIK U, MUKHOPADHYAY A.Multiobjective genetic clustering for pixel classification in remote sensing imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1506-1511. [16] RONNEBERGER O, FISCHER P, BROX T.U-Net: convolutional networks for biomedical image segmentation[M]//Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015.Cham: Springer International Publishing, 2015: 234-241. [17] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [18] ZHAO Jinling, LI Zheng, LEI Yu, et al.Application of UAV RGB images and improved PSPNet network to the identification of wheat lodging areas[J].Agronomy, 2023, 13(5): 1309. [19] CHEN L, PAPANDREOU G, KOKKINOS I, et al.Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL].[2025-05-22].https://arxiv.org/abs/1412.7062. [20] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [21] CHEN L, PAPANDREOU G, SCHROFF F, et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].[2025-05-22].https://arxiv.org/abs/1706.05587. [22] CHEN L C, ZHU Yukun, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of 2018 European Conference on Computer Vision (ECCV).Cham: Springer, 2018: 833-851. [23] SHELHAMER E, LONG J, DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2017:640-651. |