测绘通报 ›› 2025, Vol. 0 ›› Issue (12): 115-120.doi: 10.13474/j.cnki.11-2246.2025.1220

• 技术交流 • 上一篇    

顾及深层梯度特征的温室大棚边界高精度提取方法

朱映1, 梁子亮1, 李彦烨2   

  1. 1. 江苏省基础地理信息中心, 江苏 南京 210000;
    2. 南京华苏科技有限公司, 江苏 南京 210000
  • 收稿日期:2025-02-26 发布日期:2025-12-31
  • 作者简介:朱映(1989—),男,硕士,高级工程师,主要从事新型基础测绘、地理信息公共服务平台、实景三维及自然资源调查监测方面的工作。E-mail:714511258@qq.com

Deep gradient-incorporated high-precision boundary extraction framework for greenhouse structures

ZHU Ying1, LIANG Ziliang1, LI Yanye2   

  1. 1. Provincial Geomatics Center of Jiangsu, Nanjing 210000, China;
    2. Nanjing Huasu Technology Co., Ltd., Nanjing 210000, China
  • Received:2025-02-26 Published:2025-12-31

摘要: 温室大棚是现代农业的重要基础设施,其精准监测对于农业现代化和粮食安全具有重要意义。然而,由于大棚边界复杂的光学特性和边缘信息的梯度过渡特性,传统的分割和矢量化方法在高精度提取边界时存在较大局限性。本文提出了一种基于梯度特征学习和地学主动轮廓模型的温室大棚高精度边界提取方法。首先,使用基于Vision Transformer的预训练编码器提取高维图像特征,并通过多任务分割解码器生成掩码、边缘和梯度信息。在此基础上,引入梯度场构造模型指导矢量化过程,结合地学主动轮廓模型进行边界后处理,以提升边界平滑度和矢量化精度。试验结果表明,与传统矢量化方法相比,本文框架在交并比和最大角误差等指标上表现更优,尤其适用于复杂地学轮廓的提取任务,为设施农业遥感监测提供了新的解决方案。

关键词: 梯度特征, 深度学习, 地物分割, 矢量化

Abstract: Greenhouse serve as critical infrastructure in modern agriculture,where precise monitoring holds significant implications for agricultural modernization and food security.However,traditional segmentation and vectorization methods exhibit substantial limitations in high-precision boundary extraction due to complex optical characteristics and gradient transition properties of greenhouse edges.This study proposes a novel boundary extraction framework integrating gradient feature learning and geographic active contour modeling.Initially,a Vision Transformer based pretrained encoder extracts high-dimensional image features,while a multi-task segmentation decoder concurrently generates mask,edge,and gradient representations.Subsequently,a gradient field construction model guides the vectorization process,coupled with geographic active contour-based postprocessing to significantly enhance boundary smoothness and vectorization accuracy.Experimental results demonstrate superior performance over conventional vectorization methods in metrics including intersection over union (IoU)and maximum angular error,particularly excelling in complex geographic contour extraction tasks.This framework provides an innovative solution for remote sensing monitoring in facility agriculture.

Key words: gradient features, deep learning, geographic feature segmentation, vectorization

中图分类号: