测绘通报 ›› 2025, Vol. 0 ›› Issue (6): 37-42,102.doi: 10.13474/j.cnki.11-2246.2025.0607

• 学术研究 • 上一篇    

基于目标检测算法YOLOv 9的滑坡隐患识别——以永新县为例

涂梨平1,2, 陈美球1, 冷鹏3   

  1. 1. 江西农业大学国土资源与环境学院, 江西 南昌 330045;
    2. 江西省核工业地质调查院, 江西 南昌 330038;
    3. 江西核工业测绘院集团有限公司, 江西 南昌 330038
  • 收稿日期:2025-01-02 发布日期:2025-07-04
  • 通讯作者: 陈美球。E-mail:cmq12@263.net
  • 作者简介:涂梨平(1981—),女,硕士,正高级工程师,主要从事遥感技术、地质灾害监测预警和国土空间规划等相关工作。E-mail:21924581@qq.com
  • 基金资助:
    国家自然科学基金(42461041)

Landslide hazard identification based on the object detection algorithm YOLOv9:taking Yongxin county as an example

TU Liping1,2, CHEN Meiqiu1, LENG Peng3   

  1. 1. School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China;
    2. Jiangxi Nuclear Industry Geology Survey Institute, Nanchang 330038, China;
    3. Jiangxi Nuclear Industry Surveying and Mapping Institute Group Co., Ltd., Nanchang 330038, China
  • Received:2025-01-02 Published:2025-07-04

摘要: 滑坡灾害是最为严重的地质灾害之一,每年因滑坡灾害造成的财产损失与人员伤亡巨大,传统的基于影像人工排查工作量大、效率低。本文以永新县为研究区,首先基于高分辨率航空影像构建的207个滑坡样本,采用YOLOv 9目标检测算法构建滑坡识别模型,然后对模型精度进行评价,最后识别全县滑坡,并对识别的滑坡结果进行分析。结果表明,模型的精度为0.98,召回率为0.97,mAP为0.95;全县共识别滑坡312处(模型误判46处),经人工内业比对和外业调查验证,模型识别准确率为85.26%。研究表明,基于目标检测算法YOLOv9能有效识别南方地区滑坡,为大范围识别南方小规模滑坡提供了一种有效解决方法。

关键词: 滑坡, 目标检测, 遥感, YOLOv9, 自动识别

Abstract: Landslide disaster is one of the most serious geological disasters,which causes huge property losses and casualties every year.Traditional image-based manual investigation is heavy in workload and low in efficiency.This study takes Yongxin county as the research area,firstly,uses the YOLOv9 object detection algorithm to build a landslide recognition model based on 207 landslide samples constructed by high-resolution aerial images,and then evaluates the accuracy of the model.Finally,the landslide of the whole county is identified and the landslide results identified are analyzed.The results show that the accuracy of the model is 0.98,the recall rate is 0.97,and the mAP is 0.95.There are 312 common landslides in the county,and 46 are misjudged by the model through comparison and field investigation,and the accuracy of model recognition is 85.26%.It can be seen that YOLOv9,an object detection algorithm,can effectively identify landslides in the southern region,providing an effective solution for large-scale identification of small-scale landslides in the south.

Key words: landslide, target detection, remote sensing, YOLOv9, automatic recognition

中图分类号: