[1] 周晓亭.基于多源数据的滑坡识别及其易发性动态评价[D].抚州:东华理工大学,2022. [2] 魏丽.面向村镇的泥石流灾害风险定量评估研究[D].成都:中国科学院大学(中国科学院水利部成都山地灾害与环境研究所),2020. [3] 李永鑫,王德富,马志刚,等.知识图谱驱动下的多源遥感滑坡隐患识别[J].测绘通报,2024(1):12-18. [4] 丁永辉,张勤,杨成生,等.基于高分遥感的金沙江流域滑坡识别:以巴塘县王大龙村为例[J].测绘通报,2022(4):51-55. [5] 简小婷,赵康,左小清,等.基于Faster R-CNN目标检测的滑坡隐患识别——以福贡县城区为例[J].化工矿物与加工,2022,51(12):19-24. [6] FENG Q,XU X,WANG Z.Deep learning-based small object detection:a survey[J].Mathematical Biosciences & Engineering,2023,20(4):6551-6590. [7] 梁峰.基于遥感技术与深度学习的四川高陡山区典型地质灾害识别[D].成都:成都理工大学,2021. [8] LI Zheng,WANG Yongcheng,ZHANG Ning,et al.Deep learning-based object detection techniques for remote sensing images:a survey[J].Remote Sensing,2022,14(10):2385. [9] 王晶晶.基于深度学习的泸定县滑坡隐患识别与易发性评估方法研究[D].武汉:中国地质大学,2023. [10] LONG Leijin,HE Feng,LIU Hongjiang.The use of remote sensing satellite using deep learning in emergency monitoring of high-level landslides disaster in Jinsha River[J].The Journal of Supercomputing,2021,77(8):8728-8744. [11] ZHANG Pengfei,XU Chong,MA Siyuan,et al.Automatic extraction of seismic landslides in large areas with complex environments based on deep learning:an example of the 2018 iburi earthquake,Japan[J].Remote Sensing,2020,12(23):3992. [12] LI Huajin,HE Yusen,XU Qiang,et al.Detection and segmentation of loess landslides via satellite images:a two-phase framework[J].Landslides,2022,19(3):673-686. [13] YU Zhengbo,CHANG Ruichun,CHEN Zhe.Automatic detection method for loess landslides based on GEE and an improved YOLOX algorithm[J].Remote Sensing,2022,14(18):4599. [14] LI Yunlong,DING Mingtao,ZHANG Qian,et al.Old landslide detection using optical remote sensing images based on improved YOLOv8[J].Applied Sciences,2024,14(3):1100. [15] QI Jiangtao,LIU Xiangnan,LIU Kai,et al.An improved YOLOv5 model based on visual attention mechanism:Application to recognition of tomato virus disease[J].Computers and Electronics in Agriculture,2022,194:106780. [16] WANG G,CHEN Y,AN P,et al.UAV-YOLOv8:a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J].Sensors (Basel),2023,23(16):7190. [17] WANG C Y,YEH I H,MARK LIAO H Y.YOLOv9:learning what you want to learn using programmable gradient information[M]//Computer Vision-ECCV 2024.Cham:Springer Nature Switzerland,2024:1-21. [18] HOU Heyi,CHEN Mingxia,TIE Yongbo,et al.A universal landslide detection method in optical remote sensing images based on improved YOLOX[J].Remote Sensing,2022,14(19):4939. |