测绘通报 ›› 2023, Vol. 0 ›› Issue (10): 98-104.doi: 10.13474/j.cnki.11-2246.2023.0302

• 学术研究 • 上一篇    下一篇

结合机器学习的GNSS-IR多卫星双频组合土壤湿度反演

聂士海1, 王龙1, 王梦柯1, 李鹏1, 梁磊1, 黄丹妮1, 刘斌2   

  1. 1. 滁州学院地理信息与旅游学院, 安徽 滁州 239000;
    2. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044
  • 收稿日期:2023-06-21 修回日期:2023-08-28 发布日期:2023-10-28
  • 通讯作者: 王梦柯。E-mail:mengkewang@sdust.edu.cn
  • 作者简介:聂士海(1993-),男,硕士,助教,研究方向为GNSS-IR地表参数反演。E-mail:nsh1017@chzu.edu.cn
  • 基金资助:
    国家自然科学基金(42204091;42304095);安徽高校自然科学研究重点项目(KJ2021A1077;KJ2021A1084;2023AH051634);安徽省社科规划青年项目(AHSKQ2022D072);安徽省高校自然科学研究一般项目(KJ2021B08;KJ2021B07);滁州学院校级科研项目(2022XJYB03);大学生创新创业训练计划(2023cxxl1949;2023CXXL013)

GNSS-IR multi-satellite dual-frequency combination soil moisture inversion combined with machine learning

NIE Shihai1, WANG Long1, WANG Mengke1, LI Peng1, LIANG Lei1, HUANG Danni1, LIU Bin2   

  1. 1. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China;
    2. School of Remote Sensing and Surveying and Mapping Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2023-06-21 Revised:2023-08-28 Published:2023-10-28

摘要: 为提高土壤湿度反演精度,并克服基于单一卫星、单一频点开展土壤湿度反演存在的不足,本文提出了一种结合机器学习的GNSS-IR多卫星双频组合土壤湿度反演方法,将GNSS卫星L1、L2频点上SNR作为数据源进行土壤湿度反演研究,采用BP和RBF神经网络算法构建土壤湿度预测模型,并与一元线性回归预测模型进行对比分析。试验结果表明:①相对于单卫星而言,多卫星组合的土壤湿度反演增加了有效卫星利用率,并提高了土壤湿度反演的精度;②多星组合的L1、L2双频均值融合延迟相位观测值与土壤湿度的相关系数为0.956,均优于L1、L2频点反演结果;③BP、RBF神经网络模型预测结果精度均优于ULR模型预测结果。

关键词: 多卫星, GNSS-IR, 均值融合, 土壤湿度, 神经网络

Abstract: In order to improve the accuracy of soil moisture inversion and overcome the shortcomings of soil moisture inversion based on single satellite and single frequency point, this paper proposes a soil moisture inversion method based on GNSS-IR multi-satellite dual-frequency combination combined with machine learning. By using the SNR of GNSS satellite L1 and L2 frequency points as the data source, the soil moisture inversion is studied. The BP and RBF neural network algorithms are used to construct the soil moisture prediction model, and compared with the linear regression prediction model. The experimental results show that:①Compared with the single satellite, the soil moisture inversion of multi-satellite combination increases the effective satellite utilization rate and improves the accuracy of soil moisture inversion. ②The correlation coefficient between L1 and L2 dual-frequency mean fusion delay phase observations of multi-satellite combination and soil moisture is 0.956, which is better than the inversion results of L1 and L2 frequency points. ③The prediction accuracy of BP and RBF neural network models is better than that of ULR model.

Key words: multi-satellite, GNSS-IR, mean fusion, soil moisture, neural network

中图分类号: