测绘通报 ›› 2025, Vol. 0 ›› Issue (10): 36-42.doi: 10.13474/j.cnki.11-2246.2025.1007

• 学术研究 • 上一篇    

基于CBAM增强的轻量级遥感影像语义分割方法

赵效祖1, 苟长龙1, 杨扬2   

  1. 1. 甘肃交通职业技术学院, 甘肃 兰州 730207;
    2. 山西省测绘地理信息院, 山西 太原 030001
  • 收稿日期:2025-05-25 发布日期:2025-10-31
  • 作者简介:赵效祖(1979-),男,硕士,副教授,主要研究方向为工程测量、大地测量及遥感影像处理。E-mail:16791344@qq.com
  • 基金资助:
    甘肃省高等学校创新基金(2021B-463)

A lightweight remote sensing image semantic segmentation method based on CBAM enhancement

ZHAO Xiaozu1, GOU Changlong1, YANG Yang2   

  1. 1. Gansu Vocational College of Communications, Lanzhou 730207, China;
    2. Shanxi Institute of Surveying and Mapping Geographic Information, Taiyuan 030001, China
  • Received:2025-05-25 Published:2025-10-31

摘要: 本文针对高分辨率遥感影像语义分割中存在的目标尺度差异大、地物边界模糊及光谱特征相似等难点,提出了一种融合多尺度特征与双重注意力的轻量级分割模型。该模型以SegNeXt为基础,在其多尺度卷积注意力网络中引入卷积块注意力模块,通过通道与空间双重注意力机制精炼特征表达;在解码阶段优化采用Hamburger结构整合中高层语义信息。基于高分二号遥感影像数据集的试验表明,相较于原始SegNeXt,该模型各项指标均有一定程度提升,尤其在处理模糊边界和线状地物类别时表现优异;该方法在保持轻量化的同时实现了精度与效率的平衡,为资源受限环境下的遥感影像实时语义解译提供了可行方案。

关键词: 遥感影像, 语义分割, 边界增强, 轻量化网络, 深度学习

Abstract: This study addresses the challenges in high-resolution remote sensing image semantic segmentation, such as large variations in object scales, blurred boundaries, and spectral similarity.A lightweight segmentation model is proposed, which integrates multi-scale features and dual attention mechanisms.The model is based on SegNeXt, incorporating a convolutional block attention module (CBAM)into its multi-scale convolutional attention network to refine feature representations through channel and spatial dual attention mechanisms.During the decoding stage, the Hamburger structure is used to integrate mid-to-high-level semantic information.Experiments on the GF-2 remote sensing image dataset show that the model achieves noticeable improvements over the original SegNeXt across various metrics, with particularly superior performance in handling fuzzy boundaries and linear feature categories.The results demonstrate that this method achieves a balance between accuracy and efficiency while maintaining a lightweight design, offering a feasible solution for real-time semantic interpretation of remote sensing images in resource-constrained environments.

Key words: remote sensing image, semantic segmentation, boundary enhancement, lightweight network, deep learning

中图分类号: