测绘通报 ›› 2025, Vol. 0 ›› Issue (12): 158-162.doi: 10.13474/j.cnki.11-2246.2025.1227

• 技术交流 • 上一篇    

基于混合密度网络算法的近海水深反演

刘为东, 陈皓, 肖懿哲, 龚明劼   

  1. 江苏省测绘工程院, 江苏 南京 210003
  • 收稿日期:2025-04-18 发布日期:2025-12-31
  • 作者简介:刘为东(1985—),男,硕士,高级工程师,主要从事测绘基准建设与维护、海洋测绘、水资源调查研究。E-mail:780934898@qq.com
  • 基金资助:
    江苏省近海水下地理信息数据获取关键技术研究(苏自然资函〔2022〕921号);2021年江苏省海洋科技创新项目(JSZRHYKJ202101)

Nearshore water depth inversion based on the mixture density network algorithm

LIU Weidong, CHEN Hao, XIAO Yizhe, GONG Mingjie   

  1. Survey Engineering Institute of Jiangsu Province, Nanjing 210003, China
  • Received:2025-04-18 Published:2025-12-31

摘要: 为探究混合密度网络深度学习算法在近海水深反演中的应用效果,本文选取江苏省北部海州湾部分海域为研究区,采用Landsat 8卫星影像与实测水深数据,与支持向量机模型、随机森林模型、全连接神经网络模型结果精度进行比较和评价。结果表明,总体上,4种模型均具有良好的精度,混合密度网络模型在试验区域反演精度均高于其余3种模型,其水深反演的决定系数值为0.86,平均绝对误差为0.85 m,均方根误差为1.36 m,反演结果更符合实际水深。

关键词: 水深反演, 混合密度网络, 深度学习, 多光谱遥感, 海州湾

Abstract: To investigate the application effectiveness of the mixture density network deep learning algorithm in nearshore water depth inversion,a portion of Haizhou Bay in northern Jiangsu province was selected as the study area.Landsat 8 satellite imagery and measured water depth data were utilized,and the accuracy of the results was compared and evaluated against those of the support vector machine model,random forest model,and fully connected neural network model.The results indicate that,overall,all four models exhibit commendable accuracy.The mixed density network model exhibits higher inversion accuracy in the experimental area compared to the other three models,with a coefficient of determination for water depth inversion of 0.86,a mean absolute error of 0.85m,and a root mean square error of 1.36m.The inversion results align more closely with the actual water depth.

Key words: water depth inversion, mixture density network, deep learning, multispectral remote sensing, Haizhou Bay

中图分类号: