测绘通报 ›› 2026, Vol. 0 ›› Issue (1): 130-134.doi: 10.13474/j.cnki.11-2246.2026.0120

• 技术交流 • 上一篇    下一篇

基于SNUNet的国产卫星影像耕地变化检测

叶元元1, 陈春晖1, 厉香蕴1, 方婷婷2, 李金超1   

  1. 1. 安徽省基础测绘信息中心, 安徽 合肥 230031;
    2. 北京地平线信息技术有限公司, 北京 100080
  • 收稿日期:2025-05-19 发布日期:2026-02-03
  • 通讯作者: 陈春晖。E-mail:chunhui_1091@163.com
  • 作者简介:叶元元(1989—),女,硕士,工程师,主要从事航空航天遥感影像获取、处理与应用等方面的工作。E-mail:610608688@qq.com
  • 基金资助:
    安徽省自然资源科技项目(2021-K-14;2023-K-7;2025-K-4)

Changes detection of cultivated land with domestic satellite images based on SNUNet

YE Yuanyuan1, CHEN Chunhui1, LI Xiangyun1, FANG Tingting2, LI Jinchao1   

  1. 1. Anhui Province Fundation Geomatics Center, Hefei 230031, China;
    2. Beijing Horizon Information Technology Co., Ltd., Beijing 100080, China
  • Received:2025-05-19 Published:2026-02-03

摘要: 针对变化检测应用过程中原型算法难落地、样本集适用性差等问题,本文采用SNUNet作为原型算法,在公开数据集CDD上将密集连接孪生网络(SNUNet)与FC-EF、FC-Siam、UNet++_MSOF等同类算法进行了性能对比。结果表明,SNUNet算法能够充分利用地表覆盖的语义信息,具备更高与更稳定的变化检测精度。为进一步提高算法模型的适用性,利用国产多源卫星遥感影像在安徽省域范围内采集制作的26 000余组变化检测样本数据集,进行算法模型的本地化训练和优化,变化检测结果的准确率达84.3%。在试验区域进行耕地变化检测应用示范,结果表明,SNUNet算法模型和本次制作的样本集,在安徽省耕地保护工作中具备良好的应用前景,为其他地区和领域的变化检测工作提供了技术支撑。

关键词: 国产卫星影像, 样本集, 深度学习, 耕地变化检测

Abstract: Aiming at the problems in change detection,such as difficultly implement of prototype algorithm and poor applicability of sample set,this paper adopts SNUNet as the prototype algorithm.A comparison is made with similar algorithms on the public data set CDD,such as FC-EF,FC-Siam,UNet++_SOF,etc.,and the results show that the SNUNet can fully utilize the semantic information of surface coverage,and has higher and more stable change detection accuracy.In order to improve applicability of the algorithm model additionally,more than 26 000 sets of change detection sample datasets are produced by using domestic multi-source satellite remote sensing images in Anhui province for localized training and optimization of the algorithm,and the accuracy reaches 84.3%.An application of cultivated land change detection is conducted in the experimental area.The algorithm and sample sets have good application prospects in the protection of cultivated land in Anhui province,and provide sufficient technical support for change detection in other places and different fields.

Key words: domestic satellite image, sample set, deep learning, cultivated land change detection

中图分类号: